The delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods

Göster/Aç
Erişim
info:eu-repo/semantics/openAccessTarih
2019Tür
articleÜst veri
Tüm öğe kaydını gösterÖzet
Rize district is an important tea production site in Turkey, which is known for high quality tea. Determining the temporal changes is very crucial from the viewpoint of agricultural management and protection of tea areas. In addition, delineation of tea gardens using photogrammetric evaluation techniques for a single orthoimage takes approximately 8 h of labour work, which is both costly and time-consuming process. To overcome these issues, a method is proposed for demarcation of tea gardens from high-resolution orthoimages. In this article, a hierarchical object-based segmentation using mean-shift (MS) and supervised machine learning (ML) methods are investigated for delineation of tea gardens. First, the MS algorithm was applied to partition the images into homogeneous segments (objects) and then from each segment, various spectral, spatial and textural features were extracted. Finally, four most widely used supervised ML classifiers, support vector machine (SVM), artificial neural network (ANN), random forest (RF), and decision trees (DTs), were selected for classification of objects into tea gardens and other types of trees. Photogrammetrically evaluated tea garden borders were taken as reference data to evaluate the performance of the proposed methods. The experiments showed that all selected supervised classifiers were effective for delineation of the tea gardens from high-resolution images. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.