Advanced Search

Show simple item record

dc.contributor.authorÇakır, Mert Yılmaz
dc.contributor.authorŞirin, Yahya
dc.date.accessioned2024-01-27T12:17:15Z
dc.date.available2024-01-27T12:17:15Z
dc.date.issued2023en_US
dc.identifier.citationCakır, M. Y., & Sirin, Y. (2023). Enhanced autoencoder-based fraud detection: a novel approach with noise factor encoding and SMOTE. Knowledge and Information Systems, 66(1), 1-18.en_US
dc.identifier.issn0219-1377
dc.identifier.issn0219-3116
dc.identifier.urihttps://doi.org/10.1007/s10115-023-02016-z
dc.identifier.urihttps://hdl.handle.net/20.500.12436/5646
dc.description.abstractFraud detection is a critical task across various domains, requiring accurate identification of fraudulent activities within vast arrays of transactional data. The significant challenges in effectively detecting fraud stem from the inherent class imbalance between normal and fraudulent instances. To address this issue, we propose a novel approach that combines autoencoder-based noise factor encoding (NFE) with the synthetic minority oversampling technique (SMOTE). Our study evaluates the efficacy of this approach using three datasets with severe class imbalance. We compare three autoencoder variants—autoencoder (AE), variational autoencoder (VAE), and contractive autoencoder (CAE)—enhanced by the NFE technique. This technique involves training autoencoder models on real fraud data with an added noise factor during the encoding process, followed by combining this altered data with genuine fraud data. Subsequently, SMOTE is employed for oversampling. Through extensive experimentation, we assess various evaluation metrics. Our results demonstrate the superiority of the autoencoder-based NFE approach over the use of traditional oversampling methods like SMOTE alone. Specifically, the AE–NFE method outperforms other techniques in most cases, although the VAE–NFE and CAE–NFE methods also exhibit promising results in specific scenarios. This study highlights the effectiveness of leveraging autoencoder-based NFE and SMOTE for fraud detection. By addressing class imbalance and enhancing the performance of fraud detection models, our approach enables more accurate identification and prevention of fraudulent activities in real-world applications.en_US
dc.language.isoengen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofKnowledge and Information Systemsen_US
dc.identifier.doi10.1007/s10115-023-02016-zen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAutoencoderen_US
dc.subjectContractive Autoencoderen_US
dc.subjectFraud Detectionen_US
dc.subjectNoise Factor Encodingen_US
dc.subjectSMOTEen_US
dc.subjectVariational Autoencoderen_US
dc.titleEnhanced autoencoder-based fraud detection: a novel approach with noise factor encoding and SMOTEen_US
dc.typearticleen_US
dc.departmentLisansüstü Eğitim Enstitüsüen_US
dc.departmentMühendislik ve Doğa Bilimleri Fakültesien_US
dc.identifier.volume66en_US
dc.identifier.issue1en_US
dc.identifier.startpage635en_US
dc.identifier.endpage652en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - İdari Personel ve Öğrencien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.institutionauthorÇakır, Mert Yılmaz
dc.institutionauthorŞirin, Yahya
dc.authorwosidEOA-7828-2022en_US
dc.authorwosidDTL-5389-2022en_US
dc.authorscopusid57203173507en_US
dc.authorscopusid55807185600en_US
dc.identifier.wosqualityQ3en_US
dc.identifier.wosWOS:001120948400004en_US
dc.identifier.scopus2-s2.0-85178164370en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record