Neutron detection and gamma-ray suppression using artificial neural networks with the liquid scintillators BC-501A and BC-537

dc.authorscopusid6602087998
dc.authorwosidABF-8283-2020
dc.contributor.authorSoderstrom, P-A
dc.contributor.authorJaworski, G.
dc.contributor.authorDobon, J. J. Valiente
dc.contributor.authorNyberg, J.
dc.contributor.authorAgramunt, J.
dc.contributor.authorde Angelis, G.
dc.contributor.authorCarturan, S.
dc.contributor.authorEgea, J.
dc.contributor.authorErduran, Mustafa Nizamettin
dc.contributor.authorErturk, S.
dc.contributor.authorde France, G.
dc.contributor.authorGadea, A.
dc.contributor.authorGoasduff, A.
dc.contributor.authorGonzalez, V
dc.contributor.authorHadynska-Klek, K.
dc.contributor.authorHuyuk, T.
dc.contributor.authorModamio, V
dc.contributor.authorMoszynski, M.
dc.contributor.authorDi Nitto, A.
dc.contributor.authorPalacz, M.
dc.contributor.authorPietralla, N.
dc.contributor.authorSanchis, E.
dc.contributor.authorTestov, D.
dc.contributor.authorTriossi, A.
dc.contributor.authorWadsworth, R.
dc.date.accessioned2019-08-31T12:10:23Z
dc.date.accessioned2019-08-13T09:37:31Z
dc.date.available2019-08-31T12:10:23Z
dc.date.available2019-08-13T09:37:31Z
dc.date.issued2018en_US
dc.departmentMühendislik ve Doğa Bilimleri Fakültesien_US
dc.descriptionWOS: 000455016800033en_US
dc.description.abstractIn this work we present a comparison between the two liquid scintillators BC-501A and BC-537 in terms of their performance regarding the pulse-shape discrimination between neutrons and gamma rays. Special emphasis is put on the application of artificial neural networks. The results show a systematically higher gamma-ray rejection ratio for BC-501A compared to BC-537 applying the commonly used charge comparison method. Using the artificial neural network approach the discrimination quality was improved to more than 95% rejection efficiency of gamma rays over the energy range 150 to 1000 keV for both BC-501A and BC-537. However, due to the larger light output of BC-501A compared to BC-537, neutrons could be identified in BC-501A using artificial neural networks down to a recoil proton energy of 800 keV compared to a recoil deuteron energy of 1200 keV for BC-537. We conclude that using artificial neural networks it is possible to obtain the same gamma-ray rejection quality from both BC-501A and BC-537 for neutrons above a low-energy threshold. This threshold is, however, lower for BC-501A, which is important for nuclear structure spectroscopy experiments of rare reaction channels where low-energy interactions dominates.en_US
dc.description.sponsorshipSwedish Research Council; UK Science and Technology Facilities Council (STFC) [ST/J000124/1, ST/L005727/1, ST/L005735/1]; NuSTAR.DA BMBF [05P15RDFN1, 114F473]; Polish National Research Centre [2017/25/B/ST2/01569, 2016/22/M/ST2/00269, 2014/14/M/ST2/00738]; COPIN-IN2P3 project; COPIGAL project; POLITA project; MINECO; Generalitat Valenciana, Spain [FPA2014-57196-C5, PROMETEO II/2014/019]; E.C. FEDER funds; European Social Fund through the Warsaw University of Technology Development Programmeen_US
dc.description.sponsorshipThis work was partially financed by the Swedish Research Council, UK Science and Technology Facilities Council (STFC) under grant numbers ST/J000124/1, ST/L005727/1, and ST/L005735/1, NuSTAR.DA BMBF 05P15RDFN1, 114F473 for TUBITAK, and the Polish National Research Centre (grants 2017/25/B/ST2/01569, 2016/22/M/ST2/00269, 2014/14/M/ST2/00738), COPIN-IN2P3, COPIGAL, POLITA projects. A. Gadea activity has been partially supported by MINECO and Generalitat Valenciana, Spain, grants FPA2014-57196-C5, Severo Ochoa and PROMETEO II/2014/019 and by the E.C. FEDER funds. G. Jaworski acknowledges the support of the framework of the European Social Fund through the Warsaw University of Technology Development Programme, realized by the Center for Advance Studies. We would also like to thank Mr. A. Grant and Mr. I. Burrows from the STFC Daresbury Laboratory for the CAD drawings used for Fig. 1.en_US
dc.identifier.doi10.1016/j.nima.2018.11.122
dc.identifier.endpage245en_US
dc.identifier.issn0168-9002
dc.identifier.issn1872-9576
dc.identifier.orcidMustafa Nizamettin Erduran |0000-0003-0852-9753en_US
dc.identifier.orcidMustafa Nizamettin Erduran |0000-0003-0852-9753
dc.identifier.scopus2-s2.0-85057630109
dc.identifier.scopusqualityQ2
dc.identifier.startpage238en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.nima.2018.11.122
dc.identifier.urihttps://hdl.handle.net/20.500.12436/920
dc.identifier.volume916en_US
dc.identifier.wos000455016800033
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorErduran, Mustafa Nizamettin
dc.language.isoen
dc.publisherELSEVIER SCIENCE BVen_US
dc.relation.ispartofNuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipmenten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBC-501Aen_US
dc.subjectBC-537en_US
dc.subjectDigital pulse-shape discriminationen_US
dc.subjectFast-neutron detectionen_US
dc.subjectLiquid scintillatoren_US
dc.subjectNeural networksen_US
dc.titleNeutron detection and gamma-ray suppression using artificial neural networks with the liquid scintillators BC-501A and BC-537en_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Söderström_P_A.pdf
Boyut:
1.99 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale dosyası / Article file