A Hybrid Approach for Outlier Detection in Pharmaceutical Cold Chain Logistics: A Case Study

dc.authorscopusid59910187900en_US
dc.authorscopusid57204934066en_US
dc.authorscopusid43761893400en_US
dc.contributor.authorYıldız Özenç, Sevde Ceren
dc.contributor.authorEr, Merve
dc.contributor.authorOktay Firat, Seniye Umit
dc.date.accessioned2025-12-01T20:25:37Z
dc.date.available2025-12-01T20:25:37Z
dc.date.issued2025en_US
dc.departmentMühendislik ve Doğa Bilimleri Fakültesien_US
dc.description.abstractPharmaceutical products are highly sensitive to environmental factors including temperature fluctuations, humidity, light and vibrations. Therefore, pharmaceutical cold chain disruptions pose significant human health, financial and regulatory risks, with logistics activities being the most critical point of vulnerability. This study proposes a hybrid approach called Route Detection-based Support Vector Regression (RD-SVR) algorithm for detecting temperature outliers during transportation of pharmaceutical products. The algorithm first conducts a preprocessing stage on the big data set where it detects the routes and prunes the unnecessary samples at the same time. Then, the cleaned data is used to train the SVR model for outlier detection. The automized route-based structure offers a real-time solution for cases involving a dynamic set of varying routes and vehicles. The proposed RD-SVR model is applied on one-year data logs of two vehicles gathered from an international logistics company, and tested against Random Forest and ANN. Test results and sensitivity analysis highlight the robustness and effectiveness of this innovative classification-based outlier detection model for identifying cold chain breakages and safeguarding product quality.en_US
dc.identifier.citationYıldız, S., Er, M., & Fırat, S. (2025). A hybrid approach for outlier detection in pharmaceutical cold chain logistics: A case study. SSRN Preprint. https://doi.org/10.1016/j.cie.2025.111250en_US
dc.identifier.doi10.1016/j.cie.2025.111250
dc.identifier.issn0360-8352
dc.identifier.orcid0000-0002-0271-5865en_US
dc.identifier.scopus2-s2.0-105005875082en_US
dc.identifier.urihttps://doi.org/10.2139/ssrn.5054703
dc.identifier.urihttps://hdl.handle.net/20.500.12436/8514
dc.identifier.volume206en_US
dc.indekslendigikaynakScopus
dc.institutionauthorOktay Firat, Seniye Umit
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.ispartofComputers and Industrial Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBig data analyticsen_US
dc.subjectCold chainen_US
dc.subjectMachine learningen_US
dc.subjectOutlier detectionen_US
dc.subjectPharmaceutical industryen_US
dc.subjectSupport vector regressionen_US
dc.titleA Hybrid Approach for Outlier Detection in Pharmaceutical Cold Chain Logistics: A Case Studyen_US
dc.typeArticle
dspace.entity.typePublication

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
ssrn-5054703.pdf
Boyut:
1.78 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Article file

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: